Abstract
Canonical Wingless (Wnt) signalling provoked by exogenous and endogenous Wnt ligands was recently shown to play a crucial role in the invasive differentiation of human trophoblasts. To gain insights into the expression pattern of the developmental regulators, we analysed all human Wnt ligands and their frizzled (FZD) receptors in the human placenta and different trophoblast model systems using semi-quantitative PCR. Fourteen out of 19 Wnt ligands and 8 out of 10 FZD receptors were detectable in placental tissues, however, expression patterns varied with gestational age and between different trophoblast subtypes suggesting cell-specific functions. Besides Wnt ligands acting through the canonical pathway, non-canonical ligands such as Wnt-5a, which may also activate alternative Wnt signalling pathways or inhibit canonical Wnt signalling, could be identified. Western blot analyses revealed secretion of Wnt-5a from primary trophoblast cultures and trophoblastic cell lines. To evaluate the potential role of Wnt-5a, SGHPL-5 trophoblast cells were transfected with luciferase reporter plasmids harbouring eight T-cell factor (TCF) DNA-recognition sequences which are exclusively activated through the canonical Wnt signalling pathway. Luciferase assays revealed that Wnt-3a-induced reporter activity was repressed by recombinant Wnt-5a indicating an antagonistic role in trophoblasts. The data suggest that a complex network of Wnt ligands and FZD receptors may regulate developmental processes of the human placenta.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.