Abstract

BackgroundStudies of the phylogeography of Mexican species are steadily revealing genetic patterns shared by different species, which will help to unravel the complex biogeographic history of the region. Campostoma ornatum is a freshwater fish endemic to montane and semiarid regions in northwest Mexico and southern Arizona. Its wide range of distribution and the previously observed morphological differentiation between populations in different watersheds make this species a useful model to investigate the biogeographic role of the Sierra Madre Occidental and to disentangle the actions of Pliocene tecto-volcanic processes vs Quaternary climatic change. Our phylogeographic study was based on DNA sequences from one mitochondrial gene (cytb, 1110 bp, n = 285) and two nuclear gene regions (S7 and RAG1, 1822 bp in total, n = 56 and 43, respectively) obtained from 18 to 29 localities, in addition to a morphological survey covering the entire distribution area. Such a dataset allowed us to assess whether any of the populations/lineages sampled deserve to be categorised as an evolutionarily significant unit.ResultsWe found two morphologically and genetically well-differentiated groups within C. ornatum. One is located in the northern river drainages (Yaqui, Mayo, Fuerte, Sonora, Casas Grandes, Santa Clara and Conchos) and another one is found in the southern drainages (Nazas, Aguanaval and Piaxtla). The split between these two lineages took place about 3.9 Mya (CI = 2.1-5.9). Within the northern lineage, there was strong and significant inter-basin genetic differentiation and also several secondary dispersal episodes whit gene homogenization between drainages. Interestingly, three divergent mitochondrial lineages were found in sympatry in two northern localities from the Yaqui river basin.ConclusionsOur results indicate that there was isolation between the northern and southern phylogroups since the Pliocene, which was related to the formation of the ancient Nazas River paleosystem, where the southern group originated. Within groups, a complex reticulate biogeographic history for C. ornatum populations emerges, following the taxon pulse theory and mainly related with Pliocene tecto-volcanic processes. In the northern group, several events of vicariance promoted by river or drainage isolation episodes were found, but within both groups, the phylogeographic patterns suggest the occurrence of several events of river capture and fauna interchange. The Yaqui River supports the most diverse populations of C. ornatum, with several events of dispersal and isolation within the basin. Based on our genetic results, we defined three ESUs within C. ornatum as a first attempt to promote the conservation of the evolutionary processes determining the genetic diversity of this species. They will likely be revealed as a valuable tool for freshwater conservation policies in northwest Mexico, where many environmental problems concerning the use of water have rapidly arisen in recent decades.

Highlights

  • Studies of the phylogeography of Mexican species are steadily revealing genetic patterns shared by different species, which will help to unravel the complex biogeographic history of the region

  • Molecular studies of montane Mexican taxa often revealed complex phylogeographical patterns, and those high levels of genetic divergence suggest an underestimation of the level of endemism in the Mexican highlands, implying that more surveys in other co-distributed taxa are needed to achieve a better understanding of the evolutionary drivers of diversification in these regions [5]

  • In the present study we aim to infer the evolutionary history of C. ornatum throughout its distribution area in order to determine the role of the Sierra Madre Occidental (SMOC) on the evolutionary history of C. ornatum and to disentangle the action of tecto-volcanic processes vs. climatic change

Read more

Summary

Introduction

Studies of the phylogeography of Mexican species are steadily revealing genetic patterns shared by different species, which will help to unravel the complex biogeographic history of the region. Our phylogeographic study was based on DNA sequences from one mitochondrial gene (cytb, 1110 bp, n = 285) and two nuclear gene regions (S7 and RAG1, 1822 bp in total, n = 56 and 43, respectively) obtained from 18 to 29 localities, in addition to a morphological survey covering the entire distribution area. Such a dataset allowed us to assess whether any of the populations/lineages sampled deserve to be categorised as an evolutionarily significant unit. Molecular studies of montane Mexican taxa often revealed complex phylogeographical patterns, and those high levels of genetic divergence suggest an underestimation of the level of endemism in the Mexican highlands, implying that more surveys in other co-distributed taxa are needed to achieve a better understanding of the evolutionary drivers of diversification in these regions [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call