Abstract

We analyzed the genetic basis of postzygotic isolation between the Bogota and USA subspecies of Drosophila pseudoobscura. These subspecies diverged very recently (perhaps as recently as 155,000 to 230,000 years ago) and are partially reproductively isolated: Bogota and USA show very little prezygotic isolation but form sterile F1 males in one direction of the hybridization. We dissected the basis of this hybrid sterility and reached four main conclusions. First, postzygotic isolation appears to involve a modest number of genes: we found large chromosome regions that have no effect on hybrid fertility. Second, although apparently few in number, the factors causing hybrid sterility show a remarkably complex pattern of epistatic interaction. Hybrids suffer no hybrid sterility until they carry the "right" allele (Bogota vs. USA) at at least four loci. We describe the complete pattern of interactions between all chromosome regions known to affect hybrid fertility. Third, hybrid sterility is caused mainly by X-autosomal incompatibilities. Fourth, hybrid sterility does not involve a maternal effect, despite earlier claims to the contrary. In general, our results suggest that fewer genes are required for the appearance of hybrid sterility than implied by previous studies of older pairs of Drosophila species. Indeed, a maximum likelihood analysis suggests that roughly 15 hybrid male steriles separate the Bogota and USA subspecies. Only a subset of these would act in F1 hybrids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call