Abstract

The work is devoted to identification and analysis of patterns of change in the elemental and phase composition, defective substructure, mecha­nical (microhardness) and tribological (wear resistance and friction coefficient) properties of stainless high-chromium steel subjected to complex processing, combining vacuum irradiation of the samples surface layer with an intense pulsed electron beam of submillisecond exposure duration and subsequent nitriding under electron-ionic heating conditions. High-chromium steel AISI 310S, which in the initial state is a polycrystalline aggregate based on γ-iron, was used as the research material. Pulsed electron beam treatment of steel was carried out on a “SOLO” installation equipped with an electron source with a plasma cathode based on a low-pressure pulsed arc discharge with grid stabilization of the cathode plasma boundary and an open anode plasma boundary. Steel nitriding was carried out on a “TRIO” installation with a chamber size of 600×600×600 mm, equipped with a switching unit to implement the electron-ionic processing mode. Nitriding was carried out at 723, 793, and 873 K temperatures for 1, 3 and 5 h. It was found that electron-ionic nitriding of the samples pre-irradiated with an electron beam (10 J/cm2, 200 μs, 3 pulses at 723 and 793 K for 3 h) is accompanied by the formation of a ceramic layer containing only iron and chromium nitrides. The highest values of steel wear resistance after electron-ionic nitriding, exceeding the wear resistance of the initial steel by more than 700 times, are observed at nitriding parameters of 793 K, 3 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.