Abstract
The eigenvalue problem for the linear stability of Couette flow between rotating concentric cylinders to axisymmetric disturbances is considered. It is shown by numerical calculations and by formal perturbation methods that when the outer cylinder is at rest there exist complex eigenvalues corresponding to oscillatory damped disturbances. The structure of the first few eigenvalues in the spectrum is discussed. The results do not contradict the ‘principle of exchange of stabilities’; namely, for a fixed axial wavenumber the first mode to become unstable as the speed of the inner cylinder is increased is non-oscillatory as the stability boundary is crossed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.