Abstract

BackgroundThe Positive Transcription Elongation Factor b (P-TEFb) is a complex of Cyclin Dependent Kinase 9 (CDK9) with either cyclins T1, T2 or K. The complex phosphorylates the C-Terminal Domain of RNA polymerase II (RNAPII) and negative elongation factors, stimulating productive elongation by RNAPII, which is paused after initiation. P-TEFb is recruited downstream of the promoters of many genes, including primary response genes, upon certain stimuli. Flavopiridol (FVP) is a potent pharmacological inhibitor of CDK9 and has been used extensively in cells as a means to inhibit CDK9 activity. Inhibition of P-TEFb complexes has potential therapeutic applications.ResultsIt has been shown that Lipopolysaccharide (LPS) stimulates the recruitment of P-TEFb to Primary Response Genes (PRGs) and proposed that P-TEFb activity is required for their expression, as the CDK9 inhibitor DRB prevents localization of RNAPII in the body of these genes. We have previously determined the effects of FVP in global gene expression in a variety of cells and surprisingly observed that FVP results in potent upregulation of a number of PRGs in treatments lasting 4-24 h. Because inhibition of CDK9 activity is being evaluated in pre-clinical and clinical studies for the treatment of several pathologies, it is important to fully understand the short and long term effects of its inhibition. To this end, we determined the immediate and long-term effect of FVP in the expression of several PRGs. In exponentially growing normal human fibroblasts, the expression of several PRGs including FOS, JUNB, EGR1 and GADD45B, was rapidly and potently downregulated before they were upregulated following FVP treatment. In serum starved cells re-stimulated with serum, FVP also inhibited the expression of these genes, but subsequently, JUNB, GADD45B and EGR1 were upregulated in the presence of FVP. Chromatin Immunoprecipitation of RNAPII revealed that EGR1 and GADD45B are transcribed at the FVP-treatment time points where their corresponding mRNAs accumulate. These results suggest a possible stress response triggered by CDK9 inhibition than ensues transcription of certain PRGs.ConclusionsWe have shown that certain PRGs are transcribed in the presence of FVP in a manner that might be independent of CDK9, suggesting a possible alternative mechanism for their transcription when P-TEFb kinase activity is pharmacologically inhibited. These results also show that the sensitivity to FVP is quite variable, even among PRGs.

Highlights

  • The Positive Transcription Elongation Factor b (P-TEFb) is a complex of Cyclin Dependent Kinase 9 (CDK9) with either cyclins T1, T2 or K

  • Our findings appeared to be at odds with recent work that has shown that expression of primary response genes (PRGs) responsive to LPS stimulation in macrophages correlates with recruitment of cyclin T1 and CDK9 to those genes coinciding with phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNAPII) on Ser-2, and that preincubation of macrophages with 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), a CDK9 inhibitor, prevents RNAPII Ser-2 phosphorylation and productive elongation of these genes [17]

  • Since Hargreaves and collaborators classified PRGs into two groups based on their GC promoter content: PRG-I (GC rich) and PRG-II (GC poor), we clustered genes designated PRG-I and PRG-II in their study using the expression log2 ratios from our microarray data obtained with BJTERT fibroblasts and visualized the results with JavaTreeView (Figure 1A)

Read more

Summary

Introduction

The Positive Transcription Elongation Factor b (P-TEFb) is a complex of Cyclin Dependent Kinase 9 (CDK9) with either cyclins T1, T2 or K. The Positive Transcription Elongation Factor b (P-TEFb) is a complex of CDK9 and either cyclins T1, T2 or K [1,2,3,4]. P-TEFb is recruited to promoters by transcription factors and/or BRD4 where it stimulates transcriptional elongation by phosphorylating the C-terminal domain (CTD) of RNA polymerase II (RNAPII) and the negative elongation factors DSIF and NELF [5,6,7]. Our findings appeared to be at odds with recent work that has shown that expression of PRGs responsive to LPS stimulation in macrophages correlates with recruitment of cyclin T1 and CDK9 to those genes coinciding with phosphorylation of the CTD of RNAPII on Ser-2, and that preincubation of macrophages with 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), a CDK9 inhibitor, prevents RNAPII Ser-2 phosphorylation and productive elongation of these genes [17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call