Abstract

In this paper, the dynamic response of a simply supported travelling beam subjected to a transverse load is investigated in the super-critical speed range. The well-known axially moving beam theory is considered and a simple viscous damping mechanism has been introduced. The displacement field is expanded in a series of the buckling modes, a sine series, and different techniques have been used in analyzing the response of the dynamical system. Periodic oscillations are studied by means of continuation techniques, while non-stationary dynamics are investigated through direct simulations. A comparison with the literature and a convergence test on the series expansion are performed. A sample case of a physical beam is developed and numerical results are presented concerning bifurcation analysis and stability, and direct simulations of global postcritical dynamics. A complex scenario of alternate regular and chaotic motions is found in a large range of the main parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.