Abstract

In this paper, complex dynamics of a diffusive predator–prey model is investigated, where the prey is subject to strong Allee effect and threshold harvesting. The existence and stability of nonnegative constant steady state solutions are discussed. The existence and nonexistence of nonconstant positive steady state solutions are analyzed to identify the ranges of parameters of pattern formation. Spatially homogeneous and nonhomogeneous Hopf bifurcation and discontinuous Hopf bifurcation are proved. These results show that the introduction of strong Allee effect and threshold harvesting increases the system spatiotemporal complexity. Finally, numerical simulations are presented to validate the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.