Abstract
This contribution investigates the nonlinear dynamics of a model of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight. The investigations show that the proposed HNNs model possesses three equilibrium points (the origin and two nonzero equilibrium points) which are always unstable for the set of synaptic weights matrix used to analyze the equilibria stability. Numerical simulations, carried out in terms of bifurcation diagrams, Lyapunov exponents graph, phase portraits and frequency spectra, are used to highlight the rich and complex phenomena exhibited by the model. These rich nonlinear dynamic behaviors include period doubling bifurcation, chaos, periodic window, antimonotonicity (i.e. concurrent creation and annihilation of periodic orbits) and coexistence of asymmetric self-excited attractors (e.g. coexistence of two and three disconnected periodic and chaotic attractors). Finally, PSpice simulations are used to confirm the results of the theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AEU - International Journal of Electronics and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.