Abstract

We examine the characteristics of non-equilibrium dynamics produced by a simple well-known model of frequency-dependent selection at a single diploid locus. An examination of the parameter space of this “pairwise-interaction model” (PIM) revealed non-equilibrium dynamics for polymorphisms of 3, 4 and 5 alleles; both allele-frequency cycling and aperiodic trajectories were detected. We measured the number, cycle length and domains of attraction of the various attractors produced by the model. The domains of attraction tended to be smaller, and the cycles longer, for systems with larger number of alleles. Fitnesses that parametrized negative frequency-dependent selection were more likely to allow cycling, and these cycles also had larger domains of attraction. Aperiodic trajectories were detected only in cases with 4 or 5 alleles. The genetic cycles produced by the model do not have periods as short as those predicted in ecological models with cycling (such as predator–prey population cycles, etc.). Consequently, in a real-world system, PIM allele-frequency cycling is likely to be indistinguishable from stable equilibria when observed over short time scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.