Abstract

<abstract><p>In this paper, under homogeneous Neumann boundary conditions, the complex dynamical behaviors of a diffusive Leslie-Gower predator-prey model with a ratio-dependent Holling type III functional response and nonlinear prey harvesting is carefully studied. By scrupulously analyzing and comprehending the distribution of the eigenvalues, the existence and stability (balance) of the extinction and coexistence equilibrium states are determined, and the bifurcations exhibited by the system are investigated by a mathematical analysis. Additionally, based on the theoretical analysis and numerical simulation, (Harvesting rate-induced, Delay-induced), Turing-Hopf bifurcations points are derived. Our results show that delay and nonlinear prey harvesting rates can create spatially inhomogeneous periodic solutions.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.