Abstract
A new fractional-order cellular neural network (CNN) system is solved using the Adomian decomposition method (ADM) with the hyperbolic tangent activation function in this paper. The equilibrium point is analyzed in this CNN system. The dynamical behaviors are studied as well, using a phase diagram, bifurcation diagram, Lyapunov Exponent spectrum (LEs), and spectral entropy (SE) complexity algorithm. Changing the template parameters and the order values has an impact on the dynamical behaviors. The results indicate that rich dynamical properties exist in the system, such as hyperchaotic attractors, chaotic attractors, asymptotic periodic loops, complex coexisting attractors, and interesting state transition phenomena. In addition, the digital circuit implementation of this fractional-order CNN system is completed on a digital signal processing (DSP) platform, which proves the accuracy of ADM and the physical feasibility of the CNN system. The study in this paper offers a fundamental theory for the fractional-order CNN system as it applies to secure communication and image encryption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.