Abstract

First, a discrete stage-structured and harvested predator–prey model is established, which is based on a predator–prey model with Type III functional response. Then theoretical methods are used to investigate existence of equilibria and their local properties. Third, it is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of [Formula: see text], by using the normal form of discrete systems, the center manifold theorem and the bifurcation theory, as varying the model parameters in some range. In particular, the direction and the stability of the flip bifurcation and the Neimark–Sacker bifurcation are showed. Finally, numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as cascades of period-doubling bifurcation and chaotic sets. These results reveal far richer dynamics of the discrete model compared with the continuous model. The Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. In addition, we show also the stabilizing effect of the harvesting by using numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.