Abstract

Page segmentation and classification is very important in document layout analysis system before it is presented to an OCR system or for any other subsequent processing steps. In this paper, we propose an accurate and suitably designed system for complex documents segmentation. This system is based on steerable pyramid transform. The features extracted from pyramid sub-bands serve to locate and classify regions into text (either machine-printed or handwritten) and non-text (images, graphics, drawings or paintings) in some noise-infected, deformed, multilingual, multi-script document images. These documents contain tabular structures, logos, stamps, handwritten script blocks, photographs, etc. The encouraging and promising results obtained on 1,000 official complex document images data set are presented in this research paper. We compared our results with those from existing state-of-the-art methods. This comparison shows that the proposed method performs consistently well on large sets of complex document images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.