Abstract
In this paper Kählerian Killing spinors on manifolds of complex dimensionm=4l+3 are constructed. The construction is based on a theorem which states that a closed Kähler Einstein manifold of complex dimension 4l+3 and positive scalar curvature admits a Kählerian Killing spinor if and only if there is a complex (2l+1)-contact structure. In particular, any complex contact structure in the usual sense gives rise to such a generalized contact structure. Using this, new examples of Kählerian Killing spinors are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.