Abstract

The conformational preference of the O6-benzyl-guanine (BzG) adduct was computationally examined using nucleoside, nucleotide, and DNA models, which provided critical information about the potential mutagenic consequences and toxicity of the BzG adduct in our cells. Substantial conformational flexibility of the BzG moiety, including rotation of the bulky group with respect to the base and the internal conformation of the bulk moiety, is seen in the nucleoside and nucleotide models. This large conformational flexibility suggests the conformation adopted by BzG is dependent on the local environment of the BzG adduct. Upon incorporation of the adduct into the DNA helix, the BzG conformational flexibility is maintained. The range of BzG conformations adopted in DNA likely arises due to a combination of the long and flexible (-CH2-) linker, the small adduct size, and the lack of discrete interactions between the bulky moiety and G. Because of the conformational flexibility of the adduct, many DNA conformations are observed for BzG adducted DNA, including those not previously reported in the literature, and thus, a modified nomenclature for adducted DNA conformations is presented. Furthermore, the preferred conformation of BzG adducted DNA is greatly dependent on a number of factors, including the pairing nucleotide, the discrete interactions in the helix, and the solvation of the benzyl moiety. These factors in turn lead to a complicated mutagenic and toxic profile that may invoke pairing with natural C, mispairs, or deletion mutations, which is supported by previously reported experimental biochemical studies. Despite this complex mutagenic profile, pairing with C leads to the most stable helical structure, which is the first combined structural and energetic explanation for experimental studies reporting a higher rate of C incorporation than any other nucleobase upon BzG replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call