Abstract
The purpose of this paper is to give the algebraic topological background for elliptic cohomology theory and to pose some number theoretic problems suggested by these concepts. Algebraic topologists study functors from the category of spaces to various algebraic categories. In particular there are functors to the category of graded rings called multiplicative generalized cohomology theories. (All rings are assumed to be commutative and unital. Graded rings are commutative subject to the usual sign conventions, i.e., odd-dimensional elements anticommute with each other.) These functors satisfy all of the Eilenberg-Steenrod axioms but the dimension axiom. In other words they have the same formal properties as ordinary cohomology except that the cohomology of a point may be more complicated. For a discussion of these axioms the interested reader should consult [S] or [ES]; for generalized cohomology theories a good reference is Part III of [A1]. Among these cohomology theories the following examples are mentioned elsewhere in this volume:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.