Abstract

Complex coacervation is an up-and-coming encapsulation technique widely working in the medicinal, food, agriculture, and textile industries. This study investigated the effect of biopolymer ratio and pH on the complexation between chickpea protein isolate (CPI) and pectin (PC) through zeta potential, turbidity measurement, and visual observations. Pectin showed a negative charge profile between pH 2-9. The isoelectric point of the chickpea protein isolate was found as 4.5 (pI). Soluble complexes were formed in the system with pHs below the pI of CPI with positive charges, whereas PC had negative ones. Complex coacervates formed at pH 3.1 with a 4:1(CPI: PC) biopolymer ratio. The turbidity and visual appearance revealed that larger aggregates were formed in CPI-PC coacervates. The findings could help in the development of pH-sensitive biopolymer carriers for use in functional foods and biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.