Abstract

Using the complex Langevin sampling strategy, field theoretic simulations are performed to study the equilibrium phase behavior and structure of symmetric polycation-polyanion mixtures without salt in good solvents. Static structure factors for the segment density and charge density are calculated and used to study the role of fluctuations in the electrostatic and chemical potential fields beyond the random phase approximation. We specifically focus on the role of charge density and molecular weight on the structure and complexation behavior of polycation-polyanion solutions. A demixing phase transition to form a "complex coacervate" is observed in strongly charged systems, and the corresponding spinodal and binodal boundaries of the phase diagram are investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.