Abstract

Developing efficient and stable carbon nanotube (CNT) doping techniques and elucidating their chemistry is essential for their further implementation in electronic and energy devices. Here, protonic acids and lithium salts are employed as p-type inducers and stabilizers of the doped state, respectively. Leveraging the electron-withdrawing capability of protons, protonic acids can easily induce heavily p-doped states in CNTs. Anionic species from the acids attach to the positively charged CNTs to achieve charge compensation. Introducing lithium salts with bulky, charge-delocalized anions to the p-doped CNTs results in an anion replacement driven by the free energy gain. The newly formed complexes demonstrate outstanding thermal stability in air, enduring a temperature of 100 °C for over a year. The chemical hardness of the applied anion effectively explains the difference in stability of the doped CNTs, indicating that the doping process and its stabilization can be understood and controlled through complex chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call