Abstract
The majority of synapses in primary visual cortex mediate excitation between nearby neurons, yet the role of local recurrent connections in visual processing remains unclear. We propose that these connections are responsible for the spatial-phase invariance of complex-cell responses. In a network model with selective cortical amplification, neurons exhibit simple-cell responses when recurrent connections are weak and complex-cell responses when they are strong, suggesting that simple and complex cells are the low- and high-gain limits of the same basic cortical circuit. Given the ubiquity of invariant responses in cognitive processing, the recurrent mechanism we propose for complex cells may be widely applicable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.