Abstract

Dyson's Brownian motion model with the parameter $\beta=2$, which we simply call the Dyson model in the present paper, is realized as an $h$-transform of the absorbing Brownian motion in a Weyl chamber of type A. Depending on initial configuration with a finite number of particles, we define a set of entire functions and introduce a martingale for a system of independent complex Brownian motions (CBMs), which is expressed by a determinant of a matrix with elements given by the conformal transformations of CBMs by the entire functions. We prove that the Dyson model can be represented by the system of independent CBMs weighted by this determinantal martingale. From this CBM representation, the Eynard-Mehta-type correlation kernel is derived and the Dyson model is shown to be determinantal. The CBM representation is a useful extension of $h$-transform, since it works also in infinite particle systems. Using this representation, we prove the tightness of a series of processes, which converges to the Dyson model with an infinite number of particles, and the noncolliding property of the limit process.

Highlights

  • Dyson’s Brownian motion model with the parameter β = 2, which we call the Dyson model in this talk, is realized as an h-transform of the absorbing Brownian motion in a Weyl chamber of type A

  • Depending on initial configuration of the Dyson model with a finite number of particles, we define a set of entire functions and introduce a martingale for a system of independent complex Brownian motions (CBMs), which is expressed by a determinant of a matrix with elements given by the conformal transformations of CBMs by the entire functions

  • We prove that the Dyson model can be represented by the system of independent CBMs weighted by this determinantal martingale

Read more

Summary

Introduction

Dyson’s Brownian motion model with the parameter β = 2, which we call the Dyson model in this talk, is realized as an h-transform of the absorbing Brownian motion in a Weyl chamber of type A.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.