Abstract
This research focuses on the dynamic behavior of the three-piece bogie that supports the freight train car bodies. While the system is relatively simple, in that there are very few parts involved, the behavior of the bogie is somewhat more complex. Our research focuses primarily on the behavior of the friction wedges under different operating conditions that are seen under normal operation. The Railway Technologies Laboratory (RTL) at Virginia Tech has been developing a model to better capture the dynamic behavior of friction wedges using 3-D modeling software. In previous years, a quarter-truck model, and half-truck variably damped model have been developed using MathWorks MATLAB®. This year, research has focused on the development of a half-truck variably damped model with a new (curved surface) friction wedge, and a half-truck constantly damped model, both using the MATLAB® based software program. Currently a full-truck variably damped model has been created using LMS Virtual.Lab. This software allows for a model that is more easily created and modified, as well as allowing for a much shorter simulation time, which became a necessity as more contact points, and more complex inputs were needed to increase the accuracy of the simulation results. The new model consists of seven rigid bodies: the bolster, two sideframes, and four wedges. We have also implemented full spring nests on each sideframe, where in previous models equivalent spring forces were used. The model allows six degrees-of-freedom for the wedges and bolster: lateral, longitudinal, and vertical translations, as well as pitch, roll, and yaw. The sideframes are constrained to two degrees-of-freedom: vertical and longitudinal translations. The inputs to the model are vertical and longitudinal translations or forces on the sideframes, which can be set completely independent of each other. The model simulation results have been compared with results from NUCARS®, an industrially-used train modeling software developed by the Transportation Technology Center, Inc. (TTCI), a wholly owned subsidiary of the Association of American Railroads (AAR), for similar inputs, as well as experimental data from warping tests performed at TTCI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.