Abstract

Successful performance of the water maze task requires that rats learn complex behavioral strategies for swimming in a pool of water, searching for and interacting with a hidden platform before its spatial location can be learned. To evaluate whether NMDA receptor-dependent long-term potentiation (NMDA-LTP) is required for learning the required behavioral strategies, rats with NMDA-LTP blocked by systemic pharmacological treatment were trained in the behavioral strategies using simplified and stepwise training methods. Despite the blockade of NMDA-LTP in the dentate gyrus and hippocampal area CA1, rats learned the required behavioral strategies and used them to learn both initial and reversed platform locations. This is the first evaluation of the role of NMDA-LTP specifically in behavioral strategy learning. Although hippocampal NMDA-LTP might contribute to the water maze task, this form of LTP is not essential for learning complex behavioral strategies or multiple hidden platform locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.