Abstract

Delay systems used to model retarded actions are relevant in many fields such as optics, mechanical machining, biology or physiology. A frequently encountered situation is that the length of the delay time changes with time. In this study, we use a simple map system to investigate the influence of the fluctuating delay time on the system dynamics. For simplicity, we start from a case with the delay time taking only the value of zero or one discrete time steps, where the system dynamics reduces to one- and two-dimensional map, respectively. We study two situations, periodic or random variation of the delay. Rich dynamics including coexisting multiple attractors, strange nonchaotic attractors and on-off intermittency are observed. For a special case we can show analytically the existence of a dense set of singularities of the Lyapunov exponent. Finally we present results for higher dimensional generalizations to show the relevance of our findings to more general situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.