Abstract

A complex network approach is proposed for studying the shear behavior of a rough rock joint. Similarities between aperture profiles are established, and a functional complex network—in each shear displacement—is constructed in two directions: parallel and perpendicular to the shear direction. We find that the growth of the clustering coefficient and that of the number of edges are approximately scaled with the development of shear strength and hydraulic conductivity, which could possibly be utilized to estimate and formulate a friction law and the evolution of shear distribution over asperities. Moreover, the frictional interface is mapped in the global–local parameter space of the corresponding functional friction network, showing the evolution path and, eventually, the residual stage. Furthermore, we show that with respect to shear direction, parallel aperture patches are more adaptable to environmental stimuli than perpendicular profiles. We characterize the pure-contact profiles using the same approach. Unlike the first case, the later networks show a growing trend while in the residual stage; a saturation of links is encoded in contact networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.