Abstract

The complex amplitude reflectance of the liquid crystal light valve (LCLV) is determined as a function of the writing intensity and applied voltage using an approximate model. The input and output polarizers are assumed to have arbitrary directions. The theoretical results based on this model match our experimental measurements. This theory allows us to optimize the operation of the LCLV as an intensity or phase-only spatial light modulator. When the polarizers are orthogonal and the input polarizer is at -34 degrees with the front liquid crystal director, the intensity reflectance reaches 100% (compared to 81% for the conventional configuration). Phase-only modulation is realizable by use of appropriate applied voltage bias and configuration of polarizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.