Abstract

Landscape ecology and complex adaptive systems (CAS) research provide numerous examples of systems with complex non-linear feedbacks, but our understanding of these systems is severely limited by a lack of conceptual frameworks built on these foundations. Here, we develop a conceptual framework by combining CAS organisation with landscape structure, functioning and change. The resulting framework, ‘complex adaptive landscapes’ (CAL), explicitly captures the reciprocal feedbacks and non-linear nature of interactions between components within and between system levels, and the consequent possibility of multiple functional states (alternate systems functioning). The CAL framework highlights six core tenets that describe landscape complexity and dynamics. CAL provides examples of how the complex ecohydrological interactions at finer-scale hillslope levels manifest changes to broader landscape levels, as well as multi-temporal feedbacks and change (days to decades). Understanding the specific feedback and non-linear responses of different components of the landscape, such as plant functional types, are of paramount importance for adequately designing monitoring and analytical frameworks for adaptive natural resource management. The CAL framework allows us to better understand the scale of ecohydrological functions within the landscape, and how substituted component types and their spatial and temporal configuration may cause dysfunctional states to arise as a result of human land use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call