Abstract

AbstractThe shallow 1971 MW6.6 San Fernando, California earthquake involved a complex rupture process on an immature thrust fault with a non‐planar geometry, and is notable for having a higher component of left‐lateral surface slip than expected from seismic source models. We extract its 3‐D coseismic surface displacement field from aerial stereo photographs and document the amount and width of the vertical and fault trace‐parallel components of distributed deformation along strike. The results confirm the significant left‐lateral surface offsets, suggesting a slip vector rotation at shallow depths. Comparing our offsets against field measurements of fault slip, we observe that most of the offset was accommodated in the damage zone, with off‐fault deformation averaging 69% in both the fault trace‐parallel and vertical components. However, the magnitude and width of off‐fault deformation behave differently between the vertical and fault trace‐parallel components, which, along with the rotation in rake near the surface, can be explained by dynamic rupture effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call