Abstract
Consider a partial Latin square $P$ where the first two rows and first three columns are completely filled, and every other cell of $P$ is empty. It has been conjectured that all such partial Latin squares of order at least $8$ are completable. Based on a technique by Kuhl and McGinn we describe a framework for completing partial Latin squares in this class. Moreover, we use our method for proving that all partial Latin squares from this family, where the intersection of the nonempty rows and columns form a Latin rectangle with three distinct symbols, is completable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.