Abstract
We examine the linear completeness of trajectories of eigenfunctions associated to non-linear eigenvalue problems, subject to Dirichlet boundary conditions on a segment. We pursue two specific goals. On the one hand, we establish that linear completeness persists for the non-linear Schrödinger equation, even when the trajectories lie far from those of the linear equation where bifurcations occur. On the other hand, we show that this is also the case for a fully non-linear version of this equation which is naturally associated with Appell hypergeometric functions. Both models shed new light on a framework for completeness in the non-linear setting, considered by L.E. Fraenkel over 40 years ago, that may have significant potential, but which does not seem to have received much attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.