Abstract

The completeness of the eigenfunctions of a self-adjoint Hamiltonian, which is the basic ingredient of quantum mechanics, plays an important role in nuclear reaction and nuclear-structure theory. Here we present the first formal proof of the completeness of the two-body Coulomb scattering wave functions for a repulsive unscreened Coulomb potential using Newton’s method (R. Newton, J. Math. Phys. 1, 319 (1960)). The proof allows us to claim that the eigenfunctions of the two-body Hamiltonian, with the potential given by the sum of the repulsive Coulomb plus short-range (nuclear) potentials, form a complete set. It also allows one to extend Berggren’s approach for the modification of the complete set of eigenfunctions by including the resonances for charged particles. We also demonstrate that the resonant Gamow functions with Coulomb tail can be regularized using Zel’dovich’s regularization method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call