Abstract

The completeness of normal rational curves, considered as (q + 1)-arcs in PG(n, q), is investigated. Previous results of Storme and Thas are improved by using a result by Kovacs. This solves the problem completely for large prime numbers q and odd nonsquare prime powers q e p2h+1 with p prime, p\geq p_0(h), h\geq 1, where p0(h) is an odd prime number which depends on h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.