Abstract

In this work, we continue our study on discrete abstractions of dynamical systems. To this end, we use a family of partitioning functions to generate an abstraction. The intersection of sub-level sets of the partitioning functions defines cells, which are regarded as discrete objects. The union of cells makes up the state space of the dynamical systems. Our construction gives rise to a combinatorial object - a timed automaton. We examine sound and complete abstractions. An abstraction is said to be sound when the flow of the time automata covers the flow lines of the dynamical systems. If the dynamics of the dynamical system and the time automaton are equivalent, the abstraction is complete. The commonly accepted paradigm for partitioning functions is that they ought to be transversal to the studied vector field. We show that there is no complete partitioning with transversal functions, even for particular dynamical systems whose critical sets are isolated critical points. Therefore, we allow the directional derivative along the vector field to be non-positive in this work. This considerably complicates the abstraction technique. For understanding dynamical systems, it is vital to study stable and unstable manifolds and their intersections. These objects appear naturally in this work. Indeed, we show that for an abstraction to be complete, the set of critical points of an abstraction function shall contain either the stable or unstable manifold of the dynamical system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.