Abstract

Two different solution algorithms of the corrective smoothed particle method (CSPM) are developed and examined with linear elastodynamic problems. One is to use the corrective first derivative approximations to solve the stress-based momentum equations, with stresses evaluated from the strains. This is an approach that has widely been adopted in smoothed particle hydrodynamics (SPH) methods. The other is new, in which the corrective second derivative approximations are used to directly solve the displacement-based Navier equations. The former satisfies the nodal completeness condition but lacks integrability; on the contrary, the latter is truly complete. Numerical tests show that the latter outperforms the former as well as other existing SPH methods, as expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.