Abstract
We set up a generic framework for proving completeness results for variants of the modal mu-calculus, using tools from coalgebraic modal logic. We illustrate the method by proving two new completeness results: for the graded mu-calculus (which is equivalent to monadic second-order logic on the class of unranked tree models), and for the monotone modal mu-calculus.Besides these main applications, our result covers the Kozen–Walukiewicz completeness theorem for the standard modal mu-calculus, as well as the linear-time mu-calculus and modal fixpoint logics on ranked trees. Completeness of the linear-time mu-calculus is known, but the proof we obtain here is different and places the result under a common roof with Walukiewicz' result.Our approach combines insights from the theory of automata operating on potentially infinite objects, with methods from the categorical framework of coalgebra as a general theory of state-based evolving systems. At the interface of these theories lies the notion of a coalgebraic modal one-step language. One of our main contributions here is the introduction of the novel concept of a disjunctive basis for a modal one-step language. Generalizing earlier work, our main general result states that in case a coalgebraic modal logic admits such a disjunctive basis, then soundness and completeness at the one-step level transfer to the level of the full coalgebraic modal mu-calculus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.