Abstract
Proof systems for hybrid logic typically use @-operators to access information hidden behind modalities; this labelling approach lies at the heart of the best known hybrid resolution, natural deduction, and tableau systems. But there is another approach, which we have come to believe is conceptually clearer. We call this Seligman-style inference, as it was rst introduced and explored by Jerry Seligman in natural deduction [31] and sequent calculus [32] in the 1990s. The purpose of this paper is to introduce a Seligman-style tableau system, to prove its completeness, and to show how it can be made to terminate. The most obvious feature of Seligman-style systems is that they work with arbitrary formulas, not just statements prexed by @-operators. They do so by introducing machinery for switching to other proof contexts. We capture this idea in the setting of tableaus by introducing a rule called GoTo which allows us to \jump to a named world on a tableau branch. We rst develop a Seligman-style tableau system for basic hybrid logic and prove its completeness. We then prove termination of a restricted version of the system without resorting to loop checking, and show that the restrictions do not eect completeness. Both completeness and termination results are proved by explicit translations that transform tableaus in a standard labelled system into Seligman-style tableaus and vice-versa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.