Abstract
We shall show that a completely regular semigroup is in the semigroup variety generated by the bicyclic semigroup if and only if it is an orthogroup whose maximal subgroups are abelian. Therefore the lattice of subvarieties of the variety generated by the bicyclic semigroup contains as a sublattice a countably infinite distributive lattice of semigroup varieties, each of which consists of orthogroups with maximal subgroups that are torsion abelian groups. In particular, every band divides a power of the bicyclic semigroup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.