Abstract

The completely positive (CP) tensor verification and decomposition are essential in tensor analysis and computation due to the wide applications in statistics, computer vision, exploratory multiway data analysis, blind source separation, and polynomial optimization. However, it is generally NP-hard as we know from its matrix case. To facilitate the CP tensor verification and decomposition, more properties for the CP tensor are further studied, and a great variety of its easily checkable subclasses such as the positive Cauchy tensors, the symmetric Pascal tensors, the Lehmer tensors, the power mean tensors, and all of their nonnegative fractional Hadamard powers and Hadamard products are exploited in this paper. Particularly, a so-called CP-Vandermonde decomposition for positive Cauchy--Hankel tensors is established and a numerical algorithm is proposed to obtain such a special type of CP decomposition. The doubly nonnegative (DNN) matrix is generalized to higher-order tensors as well. Based on the DNN ten...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.