Abstract

We develop a framework to determine the complete statistical behavior of a fundamental quantity in the theory of random walks, namely, the probability that n_{1},n_{2},n_{3},... distinct sites are visited at times t_{1},t_{2},t_{3},.... From this multiple-time distribution, we show that the visitation statistics of one-dimensional random walks are temporally correlated, and we quantify the non-Markovian nature of the process. We exploit these ideas to derive unexpected results for the two-time trapping problem and to determine the visitation statistics of two important stochastic processes, the run-and-tumble particle and the biased random walk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.