Abstract

We present a complete calculation of the contributions to the effective leptonic weak mixing angle, sin((2)theta;(lept)(eff), generated by closed fermion loops at the two-loop level of the electroweak interactions. This quantity is the source of the most stringent bound on the mass M(H) of the standard model Higgs boson. The size of the corrections with respect to known partial results varies between -4 x 10(-5) and -8 x 10(-5) for a realistic range of M(H) from 100 to 300 GeV. This translates into a shift of the predicted (from sin((2)theta;(lept)(eff) alone) central value of M(H) by +19 GeV, to be compared with the shift induced by a recent change in the measured top quark mass which amounts to +36 GeV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.