Abstract

In this paper, we study the topological asymptotic expansion of a topology optimisation problem that is constrained by the Poisson equation with the design/shape variable entering through the right hand side. Using an averaged adjoint approach, we give explicit formulas for topological derivatives of arbitrary order for both an L2 and H1 tracking-type cost function in both dimension two and three and thereby derive the complete asymptotic expansion. As the asymptotic behaviour of the fundamental solution of the Laplacian differs in dimension two and three, also the derivation of the topological expansion significantly differs in dimension two and three. The complete expansion for the H1 cost functional directly follows from the analysis of the variation of the state equation. However, the proof of the asymptotics of the L2 tracking-type cost functional is significantly more involved and, surprisingly, the asymptotic behaviour of the bi-harmonic equation plays a crucial role in our proof.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.