Abstract

Consider a classical Hamiltonian H in n dimensions consisting of a kinetic energy term plus a potential. If the associated Hamilton–Jacobi equation admits an orthogonal separation of variables, then it is possible to generate algorithmically a canonical basis Q, P where P1=H, P2,…,Pn are the other second-order constants of the motion associated with the separable coordinates, and {Qi,Qj}={Pi,Pj}=0, {Qi,Pj}=δij. The 2n−1 functions Q2,…,Qn,P1,…,Pn form a basis for the invariants. We show how to determine for exactly which spaces and potentials the invariant Qj is a polynomial in the original momenta. We shed light on the general question of exactly when the Hamiltonian admits a constant of the motion that is polynomial in the momenta. For n=2 we go further and consider all cases where the Hamilton–Jacobi equation admits a second-order constant of the motion, not necessarily associated with orthogonal separable coordinates, or even separable coordinates at all. In each of these cases we construct an additional constant of the motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.