Abstract

Jatropha curcas is an important non-edible oil seed tree species and is considered a promising source of biodiesel. The complete nucleotide sequence of J. curcas chloroplast genome (cpDNA) was determined by pyrosequencing and gaps filled by Sanger sequencing. The cpDNA is a circular molecule of 163,856 bp in length and codes for 110 distinct genes (78 protein coding, four rRNA and 28 distinct tRNA). Genome organisation and arrangement are similar to the reported angiosperm chloroplast genome. However, in Jatropha, the infA and the rps16 genes are non-functional. The inverted repeat (IR) boundary is within the rpl2 gene, and the 13 nucleotides at the ends of the two duplicate genes are different. Repeat analysis suggests the presence of 72 repeat regions (>30 bp) apart from the IR; of these, 48 were direct and 24 were palindromic repeats. Phylogenetic analysis of 81 protein coding chloroplast genes from 65 taxa by maximum parsimony, maximum likelihood and minimum evolution analyses at 100 bootstraps provide strong support for the placement of inaperturate crotonoids of which Jatropha is a member as sister to articulated crotonoids of which Manihot is a member.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call