Abstract

Summary Fundamental investigations of reconstruction of oxygen evolution reaction (OER) pre-catalysts and performance evaluation under realistic conditions are vital for practical water electrolysis. Here, we capture dynamic reconstruction, including the geometric/phase structure, of hydrate molybdates at oxidized potentials. Etching-reconstruction engineering endows the formed NiOOH with a sub-5-nm particle-interconnected structure, as revealed by multi-angle electron tomography. The key to complete reconstruction is the multicomponent co-leaching-induced loose reconstruction layer, conductive to solution penetration and mass transport. This unique structure avoids particle agglomeration in catalysis and promotes complete exploitation of the catalyst with 1,350 h of durability to meet industrial requirements. Upon addition of iron during reconstruction, mainstream Fe-NiOOH with a retained structure forms. Coupled with MoO2-Ni arrays in a membrane-free and two-electrode cell, it achieves stable electrolysis in industrial-concentration KOH for 260 h. This work highlights the reconstruction chemistry of hydrate oxygen-evolving systems and their performance evaluation under industrial conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.