Abstract

Multi-dimensional imaging is a powerful technique for many applications, such as biological analysis, remote sensing, and object recognition. Most existing multi-dimensional imaging systems rely on scanning or camera array, which make the system bulky and unstable. To some extent, these problems can be mitigated by employing compressed sensing algorithms. However, they are computationally expensive and highly rely on the ill-posed assumption that the information is sparse in a given domain. Here, we propose a snapshot spectral-volumetric imaging (SSVI) system by introducing the paradigm of light-field imaging into Fourier transform imaging spectroscopy. We demonstrate that SSVI can reconstruct a complete plenoptic function, P(x,y,z,θ,φ,λ,t), of the incoming light rays using a single detector. Compared with other multidimensional imagers, SSVI features prominent advantages in compactness, robustness, and low cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.