Abstract

We have produced gene knockout mice by targeted disruption of the apobec-1 gene. As recently reported by Hirano et al. (Hirano, K.-I., Young, S. G., Farese, R. V., Jr., Ng, J., Sande, E., Warburton, C., Powell-Braxton, L. M., and Davidson, N. O. (1996) J. Biol. Chem. 271, 9887-9890), these animals do not edit apolipoprotein (apo) B mRNA or produce apoB-48. In this study we have performed a detailed analysis of the lipoprotein phenotypic effects of apobec-1 gene disruption that were not examined in the previous study. We first analyzed the plasma lipoproteins in knockout animals with a wild-type genetic background. Although there was no difference in plasma cholesterol between apobec-1(-/-), +/-, or +/+ mice, there was a marked (176%) increase in plasma apoB-100, from 1.8 +/- 1.2 mg/dl in apobec-1(+/+) mice to 2.7 +/- 0.6 mg/dl in apobec-1(+/-) and 5.0 +/- 1.4 mg/dl in apobec-1(-/-) mice. Plasma apoE was similar in these animals. By fast protein liquid chromatography (FPLC) analysis, there was a significant decrease in plasma high density lipoprotein (HDL) cholesterol in apobec-1(-/-) mice. We further fractionated the plasma lipoproteins into d < 1.006, 1.006-1.02, 1.02-1.05, 1.05-1.08, 1.08-1.10, and 1.10-1.21 g/ml classes, and found a marked (30-40%) reduction in the cholesterol and protein content in the (d 1.08-1.10 and 1.10-1.21) HDL fractions, corroborating the FPLC data. SDS-gel analysis revealed an absence of apoB-48, an increase in apoB-100 in the very low density lipoprotein (VLDL) and low density lipoprotein (LDL) fractions, and a small decrease in apoA-I in the HDL fractions in the apobec-1(-/-) samples. We next raised the basal plasma apoB levels in the apobec-1(-/-) animals by cross-breeding them with human apoB transgenic (TgB) mice. The plasma apoB-100 was 3-fold higher in apobec-1(-/-)/TgB+/- mice (26.6 +/- 18.3 mg/dl) than in apobec-1(+/+)/TgB+/- mice (9.8 +/- 3.9 mg/dl, p < 0.05). The apobec-1(-/-)/TgB+/- mice had a plasma cholesterol levels of 170 +/- 28 mg/dl and triglyceride levels of 106 +/- 31 mg/dl, which are 80% and 58% higher, respectively, than the corresponding values of 94 +/- 21 mg/dl and 67 +/- 11 mg/dl in apobec+/+/TgB+/- mice. By FPLC, the apobec-1(-/-)/TgB+/- animals developed markedly elevated plasma LDL cholesterol (518.5 +/- 329.5 microg/ml) that is 373% that of apobec1(+/+)/TgB+/- mice (139.0 +/- 87.0 microg/ml) (p < 0.05). The elevated plasma triglyceride was accounted for mainly by a 97% increase in VLDL triglyceride in the apobec1(-/-)/TgB+/- mice. We conclude that apobec-1(-/-) animals have a distinctive lipoprotein phenotype characterized by significant hyperapoB-100 and HDL deficiency in mice with a wild-type genetic background. Furthermore, the abolition of apoB mRNA editing elevates plasma total cholesterol and LDL cholesterol in apobec-1(-/-) animals with a TgB background. Finally, to exclude the possibility that absence of apoB mRNA editing was a secondary effect of chronic Apobec-1 deficiency, we treated apobec-1(-/-) mice with a replication-defective mouse Apobec-1 adenoviral vector and found that we could acutely restore apoB mRNA editing in the liver. These experiments indicate that Apobec-1 is an essential component of the apoB mRNA editing machinery and absence of editing in the knockout animals is a direct consequence of the absence of functional Apobec-1.

Highlights

  • IntroductionThe abolition of apoB mRNA editing elevates plasma total cholesterol and low density lipoprotein (LDL) cholesterol in apobec1؊/؊ animals with a TgB background

  • From the ‡Departments of Cell Biology and Medicine, Baylor College of Medicine, Houston, Texas 77030-3498, the §United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Houston, Texas 77030, the ¶Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, and the ʈDepartment of Medicine, University of California, San Francisco, California 94143

  • We found that apobec1Ϫ/Ϫ mice have substantially decreased high density lipoproteins (HDL) as determined by fast protein liquid chromatography (FPLC) as well as by ultracentrifugal flotation

Read more

Summary

Introduction

The abolition of apoB mRNA editing elevates plasma total cholesterol and LDL cholesterol in apobec1؊/؊ animals with a TgB background. To exclude the possibility that absence of apoB mRNA editing was a secondary effect of chronic Apobec-1 deficiency, we treated apobec-1؊/؊ mice with a replication-defective mouse Apobec-1 adenoviral vector and found that we could acutely restore apoB mRNA editing in the liver. These experiments indicate that Apobec-1 is an essential component of the apoB mRNA editing machinery and absence of editing in the knockout animals is a direct consequence of the absence of functional Apobec-1. Apobec-1 has apoB mRNA editing activity only in the presence of complementation factors [8]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.