Abstract

Complete oxidation of ethylene was performed over supported noble metals or transition metals oxide catalysts and on monoliths under atmospheric pressure. Gold nanoparticles on Al2O3 or MxOy(M = Mo, Fe, Mn) were prepared by impregnation, coprecipitation, deposition, and dispersion methods. Nanoparticles prepared by impregnation method were irregular and very large above 25 nm, but those by coprecipitation and deposition method were uniformly nanosized at 4-5 nm. The gold nanoparticle were outstandingly active in catalyzing oxidation of ethylene. The activity order of these catalysts with preparation methods was deposition > coprecipitation > impregnation, and Au/Co3O4 prepared by deposition method showed the best performance in ethylene oxidation. The addition of gold particles to MxOy/Al2O3 catalyst enhanced the ethylene oxidation activity significantly. The main role of the gold nanoparticles apparently was to promote dissociative adsorption of oxygen and to enhance the reoxidation of the catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call