Abstract

To apply motor proteins as natural nanomolecular machines to transporting systems in nanotechnology, complete temporal control over ON/OFF switching of the motility is necessary. We have studied the photoresponsive inhibition properties of azobenzene-tethered peptides for regulation of kinesin-microtubule motility. Although a compound containing a peptide having an amino acid sequence derived from the kinesin's C-terminus (a known inhibitor of kinesin's motor domain) and also featuring a terminal azobenzene unit exhibited an inhibition effect, the phototunability of this behavior upon irradiation with UV or visible light was only moderate. Unexpectedly, newly synthesized peptides featuring the reverse sequence of amino acids of the C-terminus of kinesin exhibited excellent photoresponsive inhibition. In particular, azobenzene-CONH-IPKAIQASHGR completely stopped and started the motility of kinesin-microtubules in its trans- and cis-rich states, respectively, obtained after irradiation with visible and UV light, respectively. A gliding motility system containing this photoresponsive inhibitor allowed in situ control of the motion of microtubules on a kinesin-coated glass substrate. It is expected that the present results on the photoresponsive nanomotor system open up new opportunities to design nanotransportation systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.