Abstract

BackgroundThe recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms.ResultsThe C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements.ConclusionThe observed differences in genomic structure between C. japonica and other land plants, including pines, strongly support the theory that the large IRs stabilize the cp genome. Furthermore, the deleted large IR and the numerous genomic rearrangements that have occurred in the C. japonica cp genome provide new insights into both the evolutionary lineage of coniferous species in gymnosperm and the evolution of the cp genome.

Highlights

  • The recent determination of complete chloroplast genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies

  • There are two particular questions that need to be addressed using the complete cp genome sequence of C. japonica: (1) how different is the C. japonica cp genome from those of other plants, including gymnosperms, and (2) is the loss of the large inverted repeat (IR) involved with the instability and diversification of the cp genome, especially between coniferous groups? To respond to these questions, we present in this paper the complete nucleotide sequence of the cp genome of C. japonica [DDBJ: AP009377], and compare its overall gene content and genomic structure with those of two other angiosperms (Eucalyptus globulus and Oryza sativa), a liverwort (Marchantia polymorpha), a fern (Adiantum capillus), and two gymnosperms (Cycas taitungensis and Pinus thunbergii)

  • General characteristics of the C. japonica cp genome The total size of the C. japonica cp genome was determined to be 131,810 bp, which is larger than the cp genomes of both P. thunbergii (119,707 bp) and M. polymorpha (121,024 bp), but smaller than those of A. capillus (150,568 bp), E. globulus (160,286 bp), and C. taitungensis (163,403 bp), and approximately the same size as that of O. sativa (134,558 bp)

Read more

Summary

Introduction

The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. Since the first reports of the complete nucleotide sequences of the tobacco [1] and liverwort [2] chloroplast (cp) genomes, a number of other land plant cp genomic sequences have been determined These complete cp genomic sequences have enabled various comparative analyses, including phylogenetic studies, that are based on these data [3,4,5,6,7]. The cp genomes of these two pine species were very similar in terms of both gene content and gene order and so provided little information about the complexity of the conifer cp genome

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call